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Abstract



CDKLS5 deficiency disorder (CDD) is a developmergatephalopathy caused by pathogenic
variants in the gene cyclin-dependent kinase-liKEBKL5). This unique disorder includes early
infantile onset refractory epilepsy, hypotonia, elepmental intellectual and motor disabilities,
and cortical visual impairment. We review the dalipresentations and genetic variations in
CDD based on a systematic literature review aneéapce in the CDKL5 Centers of
Excellence (COEs). We propose minimum diagnostterca. Pathogenic variants include
deletions, truncations, splice variants, and missefariants. Pathogenic missense variants occur
exclusively within the kinase domain or affect splsites. The CDKLS5 protein is widely
expressed in the brain, predominantly in neurorii, meles in cell proliferation, neuronal
migration, axonal outgrowth, dendritic morphogesesid synapse development. The molecular
biology of CDD is revealing opportunities in preois therapy, with phase 2 and 3 clinical trials
underway or planned to assess disease specifidisaase modifying treatments.

Key words: CDKLS5 deficiency disorder; developmental enceppatby; epileptic
encephalopathy; epilepsy genetics; clinical trials

Abbreviations. CDKL5 — Cyclin dependent kinase-like 5; CDD — CDEdeficiency disorder;
COE - International Foundation for CDKL5 Researemi€r of Excellence

Introduction

Pathological variants in cyclin-dependent kinake-6 CDKL5)* cause CDKLS5 deficiency
disorder (CDD, OMIM 300203, 300672), a developmeataephalopathy (DE)DEs share
common constellations of features that extend beéyaditional criteria of autism spectrum
disorder or intellectual disability such as treatiresistant epilepsy, movement disorders and
autonomic dysfunction. Pathological variantCiDKL5 cause early-life epilepsy in 1 in 40,000 -
60,000 live births;? half to a third as prevalent as Dravet (1:20,00080)*°* or Rett
(1:10,000 female$j syndromes. Common features include infantile-orefeactory epilepsy,
hypotonia, developmental delay, intellectual difgband visual impairment-*> CDD is an X-
linked disorder that affects females more than m@td:1}° as males with germline variants
have no normal CDKL5 gene and may not survive fé&alCDD was initially identified as the
early seizure variant of Rett syndrome, but only7238of females and no males with CDD met
criteria for typical or atypical Rett syndrome atiedgnosis of atypical Rett syndrome is even
rarer in recent clinical experient&'®*’

The literature on CDD includes case series andfdatathe International CDKL5 Disorder
Database, based on caregiver questionn&iré&€?Prospective data collection is occurring
through the Natural History Study for Rett and Retated disorders (U54 HD061222;
ClinicalTrials.gov: NCT00299312/NCT02738281) antbtigh a clinic based study by the
International Foundation for CDKL5 Research (IF@®nters of Excellence (COES). Initial
sites were Boston Children’s Hospital, Childrenssidital Colorado and Cleveland Clinic. The
COEs provide comprehensive care and collaboratesearch for CDD. The COEs have



collected data on > 93 individuals with CDD betw@eio 34 years to inform the typical features
and spectrum of CDEP

CDKL5 protein and molecular biology

CDKLS5 is a serine/threonine kinase. The N-termoehlytic domain starts in exon 2 and the
long C-terminus may have a regulatory rol€DKLS5 is highly expressed in the brain,
predominantly in neuronal nuclei and dendriteshyitak expression in early postnatal life,
when symptoms typically begft?’ The CDKLS5 protein has roles in cell proliferatioreuronal
migration, axonal outgrowth, dendritic morphogesesid synapse development and function in
the adult brairf®

CDKLS5 has multiple transcripts due to alternatipéicing in mice and humarf§.The primary
brain isoform is hCDKL5_ 3 Pathogenic missense variants occur exclusivelyimthe

catalytic domain except for the recurrent missersint p.Val718Met which affects spliciAy.

A male individual mosaic for this variant follow@&dour COEs has a “typical” CDD phenotype
but has walked independently since the age of Bsy&amatic mosaicism in probands, perhaps
more often in males, and presumed parental mosaisislescribed; unaffected parents with a
full germline CDKLS5 variant have not been descritdgd®*%**Thus, parental testing is critical to
assess variants of uncertain significancEDKLS5. There are no biomarkers nor is there a
functional assay for variants of uncertain sigmaifice; both would be beneficial to the field.

Currently, no evidence supports pathogenic varignéxons 20, 21, and 22 which are part of
transcript isoforrhCDKL5_5 or within exon 17 which is part of transcriptfision

hCDKL5_2% The pathogenicity of variants in the 5’ UTR remaircertain except for deletions
extending to include exons 1 and®Deletions and truncating variants appear to nearly
universally cause CDBY.CDKLS5 variants from individuals in the COEs are showifigure 1,
on a schematic of the protein and on a 3D modelgalath population variation.

Individuals withCDKL5 duplications show variable penetrance of macroalgpdnd learning
disability without epilepsy or magnetic resonanoaging (MRI) abnormalitie¥ Neighboring
genes are rarely affected in these duplications ddntrasts with other genetic developmental
encephalopathies for which duplications causefaréifit disease than deletions (eMECP2
andFOXG1disordersY***More comprehensive phenome-genome studi€Di{L5
duplication are needed to determine if these daptios are clinically pathogenic.

Molecular studies in rodent models have identiBederal pathways are altered in CDD,
including the AKT/mTOR, AKT/GSK-3b and BDNF-Rachsgling pathways and the NGL-1-
PSD95 interaction*?>?"24%4However, these rodent models demonstrate a balaavio
phenotype but lack spontaneous seizure actVity.Dendritic outgrowth and spine
development are inconsistently altered in cell@BD models** Mouse model data suggests
that CDKL5 expression modulates post-synaptic leatibn and composition of NMDA
receptors* CDKLS5 influences MeCP2 activity, possibly explaigioverlapping features of



CDD with Rett syndrome, although the relevancehigfin vitro data remains uncertaff.
Additional CDKLS5 substrates include DNMT1, AMPH1@\-1, HDAC4, MAP1S, ARHGEF2
and EB2***® A recent review summarized the molecular featofeDD 22

Epilepsy and treatment

Refractory epilepsy severely impacts quality of kind neurodevelopmelit!’ Median age of
epilepsy onset is 6 weeks with 90% onset by 3 nehitt Eighty percent of children with CDD
have daily seizures and 20% have weekly to morstigures® Less than half (43.6%) of
caregivers reported >2 month of sustained seizeegbm:**’ Among individuals with more
than 2 months of seizure freedom (N=71 of 163 fe@miteporting information on seizure
freedom), in three quarters of families able tovpte additional information this honeymoon
period had a median duration of 6 months (ranger@bths to 6 years) and median onset of 2
years:? In the COE cohort, 9% of families reported a seivee period of 1-3 months, 12% 3-6
months, 11% 6-12 months and 13% >12 months. Tmeyrmoon period typically occurs in the
first 2 years of life, though some have seizure fyeriods later in childhood or into their teenage
years'®

Three proposed epilepsy stages in CDD includeady ®nset, at times pharmaco-responsive, 2)
epileptic encephalopathy and 3) refractory multécand myoclonic epilepsy.Infantile spasms
are the initial seizure type in 23%, and presemingtpoint in 81% of individuals with CDE:>°
Evolving epilepsy tends to be generalized or mifamal and generalized with spasms, tonic, and
tonic-clonic seizures most comm&it’ Complex seizure semiology with multiple phases per
seizure is common (56%j*including a novel seizure pattern: hypermotor-tespasms
sequence’ ™ Autonomic changes can be seen intermixed withadintiyese seizure types,
including pupillary dilation, facial flushing, irgeilar respirations, apneas or hyperventilatfon.
While for many individuals refractory epilepsy ciontes long term, our experience suggests that
rare individuals outgrow their epilepsy in childidoand one individual did not have epilepsy
onset until 9 years of agdd novoc.1675C>T; p.Arg559Terf

Electroencephalograms (EEGs) at onset ranged fyg®anrhythmia to mild abnormalities but
more abnormalities in background rhythms and epitam activity develop over

time 1°:18:2049.53355¢ arly mild abnormalities that sometimes preced#fase encephalopathy
included focal delta slowing in the posterior heagions and intermittent generalized slowifg.
Some individuals have hypsarrhythmia and evolutiften includes focal or generalized
slowing, focal and/or generalized epileptiform aityi, and in some cases pseudoperiodic
epileptiform discharges:*8%°4°°3>>>ffantile spasms can occur however in the absefce
hypsarrhythmia, including with a normal EEG or rapgleptiform activity >’ Burst

suppression is rare and atypical for neonates @b >

Data on the efficacy of seizure therapies is lichit& review of anti-seizure medication response
in 39 individuals with CDD found a responder ratef(ned as 50% seizure reduction) to at least



one anti-seizure medication of 69% at 3 months, 46%months and falling to 24% at 12
months>® Medications with the highest rates of seizure céidn at 3 months included
felbamate, vigabatrin, clobazam, valproic acidraitks, lamotrigine and zonisamide.The
efficacy of each anti-seizure medication showegdanter-individual variability, with a
maximum of 33%, except for felbamate with 3/3 regfing at 3 month3° At 12 months, the
responder rate dropped to 0-20% except for 1/3 §33#bresponding to felbamaté.
Exacerbation of seizures occurred with at leastamieseizure medication in 31% of
individuals; most often with carbamazepine (4/1dividuals)>® Our approach in the COEs is to
use broad spectrum anti-seizure medications edlyawizen there are generalized seizure types.
Overall, 2/39 individuals (5%) became seizure fare>3 years with anti-seizure medication or
ketogenic diet® The most commonly used anti-seizure medicatior@DD were broad
spectrum, including clobazam, valproate, topiramatestiracetam and vigabatrin and 29.6% of
individuals were treated with steroids or ACTHAnother study of caregiver perceptions of
treatment by survey of 44 individuals with CDD/fdies reported subjective efficacy (not
further defined) in more than 2 individuals to \bg#rin (12/23), clobazam (6/14), sodium
valproate (5/27), and levetiracetam (3/27n the Boston Children’s Hospital COE, > 50%
reduction in seizures types (excluding epileptiassps) in more than one individual occurred
with the following anti-seizure medications: phead#tal, clobazam, topiramate, rufinamide
and valproic acid®

Infantile spasms in individuals with CDD are oftesfractory to first-line therapies. From the
parent-entered International CDKLS5 Disorder Databasantile spasms were reported in 33.8%
of individuals™* By contrast, in the COE cohort of 93 individuaish data derived from
physicians, spasms occurred in 81% (n=7%)le hypothesize that the difference in prevalence
may result from data collection methods and possibder-diagnosis of infantile spasms if not
associated with hypsarrhythmia. Among 18 individualthe COE cohort with detailed data,
median spasm onset was age 4 months (2 weeksmoBts)®° spasms resolved in only 3/18
individuals (17%) with first line treatments (ACTdt vigabatrin) for epileptic spasms, lower
than the ~ 46% response rate at 3 months obsemiatantile spasms cohort$®! Since CDD is
often diagnosed before spasm onset and other sdigues often occur before spasms, such
individuals with CDD are candidates for novel thpes %1%

The ketogenic diet has modest efficacy in treagipigepsy in CDD. The largest cohort reported
104 individuals with CDD treated with median ketogediet duration of 17 months and
reductions in seizure frequency in 61/104 (58.78bhsistent with data from the Boston
Children’s Hospital COE®®® Side effects of the ketogenic diet occurred irv3d of
individuals®® A smaller cohort of 12 individuals with CDD repeditthat 2 (17%) had a
significant reduction in seizures for >6 months ar(@%) for >1 year® Behavior improvements
were reported including improved alertness in 18/®%) on the ketogenic diet while
worsening motor skills and social interactions wegorted in 5.898° Ketogenic diet was most
often discontinued due to lack of long-term effizathese retrospective observational reports



did not provide data on diet ratios, ketone levetficacy for different seizures types, percent
reduction in seizures, or duration of efficacy. &y, few individuals were treated with
ketogenic diet in the first year of life and itdiedicy and tolerability in this CDD group remains
unknown.

Palliative surgeries for refractory epilepsy in@dudagus nerve stimulation (VNS) and corpus
callosotomy. Among 220 individuals with CDD withrpat-entered data, 17% had a VNS
implanted and 69% of parents reported reduced efeequency. These data are consistent
with a case report of benéfitand Boston Children’s Hospital COE reports improeet in 5/6
individuals'®® There are no reports of response to corpus catiospin the literature and
limited experience in the COEs but no responsea@individual*® In the International CDKL5
Disorder Database at least 7/10 individuals hadesomprovement in seizures following corpus
callosotomy of whom two had a longer than 6 mormthqual of seizure freedom (unpublished
data).

Development

All individuals with CDD have severe global devetogntal delays and intellectual disability,
though regression is rare except with worseninggifures or epileptic encephalopatfiy>*®
20.70-3|ndividuals with CDD achieve gross motor milestomaé a slowed pace compared to
normal. Assessing in girls for whom there are nda®, independent walking was attained by
22-23%, raking grasp by 49% by 5 years and pinc@smby only 13% at any time poftit’*
Using time to event analysis, just under half aividuals could babble by 6 years (43/97 or
44%), and just under a quarter of subjects coutckgingle words by 7 years of age (17/105 or
16%)*’ Spoken language, signs or abstract symbols weduped by 26% of females with
CDD (0% of males) and 7.5% of females with CDD spisksentences. The most common
communication modalities were body language, faaxgiressions, and simple sounds and
gestures! Use of non-verbal communication devices such dilses and eye gaze technology
based communication is often limited by corticalual impairment, but can be used by some
individuals with CDD*® Autistic features are commonly reported but autisectrum disorder is
infrequently diagnosed due to global developmentahirments->*8%1"37a diagnosis of
autism spectrum disorder has been observed raréihgiCOES® Overall, males were reportedly
more severely affected than females, though our Exerience does not suggest a striking
difference in phenotyp¥:'®*’Males can have a milder phenotype.

M ovement disorders

Hand stereotypies were reported in 80% of indivisluand 59% of females and 12.5% of males
achieve functional hand use which may be limitecteyeotypies® The hand stereotypies that
we have observed are more consistent with selfusditory behavior versus the type of hand
stereotypies observed in Rett syndrdhBepetitive leg crossing is also commonly obser¥ed.
We lack data on other movement disorders althobhglCIOEs have observed episodic or



persistent, and occasionally severe, choreoatlsetmsathisia, dystonia, and parkinsonian
features® Movement disorders may worsen when individualsesehtemporary seizure
control® At times this may be attributed to polytherapyhadnti-seizure medications,
improving with reduction in number of anti-seizumedications®

Physical exam findings

Hypotonia is a nearly universal featdfé” Cortical visual impairment is common, occurring in
at least 75% of individuaf§,with reports of poor eye contact and lack of vistacking with an
otherwise normal ophthalmologic exant.”*82%477273Rgtatory and horizontal nystagmus,
dysconjugate gaze, abnormal fixation, and reducedbsent optokinetic nystagmus (OKN)
response are features observed in individuals wigthal impairment. Microcephaly and
deceleration of head growth occurs in less than abtdividuals™®*°*8247275ptle
dysmorphic features include deep set eyes, broagybrforehead, prominent lips, deep
philtrum, puffy phalanges and tapered fingérs:2%"*"3"Movement disorders have also been
observed as above.

Neuroimaging

Neuroimaging has not yet been systematically repart individuals with CDD, although case
reports document normal brain anatomy or less pfieow cortical atrophy or T2/fluid
attenuated inversion recovery hyperintensitiehi@white matter->-18-20:49.53.55.56.70,72.73,75.77

Neuropatholgy findings

There is very little literature describing the napaithological findings in individuals with CDD.
One case report described the brain as the soda avgh abnormalities in a post mortem
examination’® In addition to brain and cerebellar atrophy anatsieular enlargement,
microscopic examination of the brain revealed ggias the cerebral cortex with preservation of
the hexalaminar layers, neuronal heterotopiaseémithite matter of the cerebellar vermis and
gliosis of the cerebellar cortex with loss of Paj&icells and axonal torpedo@%erivascular
lymphocytes and axonal swelling in the anteriomhoere the main findings in the spinal céfd.
This child had a pathogenic splice variant c.22A%Q, predicted to destroy the splice acceptor
site of exon 16°

Other comor bidities

Gastrointestinal symptoms were reported by patienip to 86.5% in the International CDKL5
Disorder Database (122/141), most often constipd©.9%), reflux (64.1%), or air swallowing
(27.1%)*3*® Orthopedic complications of hypotonia include &sik (68.5% by 10 yearsj:*®
Dysphagia is common and may require gastrostomyle\Wwh.3% of individuals with CDD in
the International CDKL5 Disorder Database fed grathd 20.7% were exclusively fed by
gastrostomy or nasogastric tube, some requiredesmgptal tube feedings and only 5.3% were



able to eat and drink independerifiyNotably, ~33% of individuals treated with the kgtaic

diet had a gastrostomy; a similar percentage, 1{B38%), had gastrostomy in a caregiver survey
of individuals with CDD?® Sleep difficulties are very common, reported byepés in over 85%

of individuals, sometimes dubbed “all night parfiés“® Night waking was reported in 72/123
individuals (58.5%}2 The odds of sleep problems were highest in the@ §ehr age group
compared to those aged less than 5 y&dising the Child Health Sleep Questionnaire (CSHQ),
the team at Children’s Hospital Colorado found sigantly abnormal sleep maintenance and
duration’® Abnormal sleep duration was reported in 63% ohisials with CDD compared to
age based norms, and the mean score for wakingpamnaeght and more than once per night
were elevated (2.45 and 2.25 respectively, p<0fophoth).® Breathing abnormalities include
hyperventilation reported in 13.6% of individudiseath holding in 26.4%, and aspiration in
22.6%28 Parents have expressed concerns about cardiathemibs, and one study by caregiver
survey reported arrhythmia in 11/29 individualshAa@DD who underwent EC&.Arrhythmias
have not however been confirmed in the COEs, aisdgtan area of current investigatitn.
Sudden unexpected death in epilepsy (SUDEP) mayr ditt in large cohorts the frequency of
CDD is much lower than Dravet syndromeS&N8A related epilepsy given the frequencies of
these disorder®:®? However, the high seizure frequency and sevetiggests that individuals
with CDD are at high risk of SUDEP, with daily aaffen nocturnal tonic or tonic-clonic
seizure$® Metabolic abnormalities are rare; a boy with CDdl kransient methylmalonic
acidemia but the concurrence may be coincidéftal.

Clinical criteria

We propose minimum CDD diagnostic criteria to imlga pathogenic or likely pathogenic
variant in theCDKL5 gene along with motor and cognitive developmetédhys and epilepsy
with onset in the first year of life. We recogntbat some patients with CDKL5 deficiency may
be atypical and not meet these formal criteria.l@dkincludes a list of common clinical features
and what we determine to be the minimum diagnastieria.

Genotype-phenotype correlations

Genotype-phenotype correlations are limited. Coexbéo individuals with truncating variants,
those with pathogenic missense variants in the BiNBing site had a milder disorder, some
with ability to walk unaided, better hand use, &s$ refractory epilepsy. One individual in
the COE cohort with a missense variant, p.Tyr24@ythe ATP binding site has refractory
epilepsy but is making more developmental progtiess most individuals with CDD and lacks
cortical visual impairment. Another study foundttfeamales with late truncating variants after
amino acid 781 had better gross motor, hand funera communication milestones than earlier
truncating variants’’* Seizure frequency was lower in individuals withrizating variants
between amino acid 172 and 781 compared to thakenwifunctional protein (incidence rate
ratio 0.57; 95% confidence interval 0.35 — 0.83Jhe influence of somatic CDKL5 mosaicism
on clinical phenotype is unknown.



Clinical trialsand treatments suggested from animal studies

The ultimate goal of understanding the geneticsmaakkcular biology of CDD is to establish
precision therapies, targeting the underlying lgagathways, although the complex biology of
CDD makes this challenging. This may include smadlecules or perhaps genetic/genomic
treatment approaches. The hope is that these teenayay be more effective than currently
available treatments.

An open label phase 2 clinical trial of cannabidioCDD and three other early life genetic
epileptic encephalopathies suggested improvemdneguency of motor seizures >3 seconds in
duration®® The CDD group had a median reduction in motorseiz from median 66.4 per 28
days [IQR 25.9 —212.0] to 35.8 [IQR 8.9 — 141612 weeks, with stable frequency at 48
weeks®®

A phase 2 randomized, placebo-controlled crossstuety of Ataluren, a medication that targets
pathogenic nonsense variants in other genetic skse#s in process in CDD (NCT02758626))
but results are not yet available. Another phas@&Pis being initiated for TAK-935, a novel
medication that modulates the NMDA receptor sys@T03694275).

Allopregnanolone (Ganaxolone) is a neurosteroidwiaich there have been previous trials in
the epilepsies including for infantile spasms,usapilepticus and PCDH19 related epilepsy. A
phase 2 open-label clinical study is completed,aptiase 3 randomized, placebo-controlled
study is ongoing in CDD (NCT03572933). CDKLS5 redakathe interaction of IQGAP1 with
microtubule plus end tracking protein CLIP170, djging microtubule dynamics in CDB.
Allopregnanolone restores microtubule associatioldP170 in CDKL5 deficient neurons,
rescuing morphological defeds.

Molecular pathway abnormalities in CDD rodent madgiggest additional possible therapies.
Dysregulation in the GSK3-beta pathwayddkl5knockout mouse model led to treatment with
a GSK3-beta inhibitor, Tideglusf.Treatment during the juvenile period improved
hippocampal development and hippocampus-depeneéat/iors, whereas treatment in adult
mice was not beneficial. Reduced expression o2 subunit of the AMPA-R was
identified inCDKL5 knockout micé® Treatment of the mice with the antidepressanefiéine
normalized the expression of membrane inserted ANRBAontaining GIuAZ® Treatment of
rodents with IGF-1, which activates the AKT/mTORyaay, rescued dendritic spine
instability >

Protein substitution therapy has been evaluatedhimal models with promising results, though
feasibility and timeframe to bring this approacthtonan trials is uncertaifi.Novel therapeutic
approaches including genome editing, RNA-basedp®rtics and gene therapy are being
strongly considered.

Conclusions



The “typical” individual with CDD, defined by hawna pathogenic gene variant that impairs
CDKLS5 function, is characterized by onset of treataresistant epilepsy and severe cognitive
and motor developmental delays. Epilepsy usual@yrizein the first three months of life and
includes tonic seizures, epileptic spasms withgpshrrhythmia, a seizure-free honeymoon
period around 1-2 years old that may last up tonbaths, followed by multiple (2+) seizure
types including sequences of mixed seizure typeiocad visual impairment associated with
rotatory or horizontal nystagmus, dysconjugate gamkeabnormal fixation; global motor delays
with hypotonia and severe impairment of hand furctPermanent regressions or progressive
deterioration of neurological function is rare. &tlkcommonly associated features of individuals
with CDD include dyskinetic movements, sleep dis&unces, autonomic and breathing
disturbances, and Gl disturbances. We propose nami@DD diagnostic criteria as above
recognizing that some individuals with CDKL5 deéioty may be atypical and not meet these
formal criteria.

CDD is an epileptic encephalopathy, defined byltiternational League Against Epilepsy as a
disorder in which “the epileptic activity itself ma&ontribute to severe cognitive and behavioral
impairments above and beyond what might be expdrtetdthe underlying pathology alone and
that these may worsen over tinfe'The transient regressions that occur in CDD ansistent

with this definition although there is undoubtedlgevelopmental component as well. Future
studies of the natural history of CDD will betteafishe the role of seizures, interictal epileptiform
activity, and anti-seizure medications as factbeat thay adversely affect these children. We
hope that increased preclinical studies to defieemolecular consequences of impaired CDKL5
and advances in novel, targeted drug developmehirerecular biology and genetic approaches
will radically transform the prognosis for childrenth CDD.

Figure 1. A) A schematic of the CDKL5 protein with variaritem individuals with CDD
evaluated in the CDKL5 Centers of Excellen€C®KL5 gene image adapted from prior
publication?’ B) 3D protein structure of th@DKL5 gene (Protein Data Bank ID: 4bgq) along
with position of population variation (blue spheréem gnomAD database and variants from
the COEs (red spheres). C) Highlight of variantuimctional domains in the CDKL5 protein.

The missense variants @DKL5 identified in affected individuals are mapped bea 8D protein
structure (protein data bank id: 4bgq) as red gsh@otal 23 positions). The yellow-colored
region is a nucleotide binding region (aa. 19 -a2j we observed the disease-associated variant
p.Tyr24Cys in this region. The cyan-colored sita goton acceptor active site (aa. 135) and we
observed the disease-associated variant p. Asp$3b@iis site. The green-colored region is a
functionally essential DFG motif (aa. 153 - 155§l ave observed the disease-associated variant
p. Aspl53Val in this region. The pink-colored ragis the morphology (information content) or
consensus sequence of phospho-Tyrosine Y171 (pahreGlu-Tyr motif) (aa. 164 - 178) and

we observed the disease-associated variants p.@&pd./p.Tyrl77His, p.Arg178GlIn in this
region.



Table 1. Common clinical characteristics and preplasinimal diagnostic criteria.

Common clinical characteristics Proposed minimal diagnostic criteria
» Epilepsy, early onset and refractory » A pathogenic or likely pathogenic
» Severe global developmental delay variant in theCDKL5 gene
* Intellectual disability * Motor and cognitive developmental
+ Hypotonia delays
« Cortical visual impairment » Epilepsy with onset in the first year of
« Sleep disturbance life
* Dyskinetic movements,
* Autonomic and breathing disturbances
» Gl disturbances (reflux, constipation)
» Dysphagia
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